Medical Flow Physics Laboratory (MFPL)

USC Michelson Center for Convergent Bioscience

Department of Aerospace & Mechanical Engineering

PEER-REVIEWED PUBLICATIONS

  1. 80- Alavi R, Dai W, Matthews RV, Kloner RA, and Pahlevan NM (2023). “Instantaneous Detection of Acute Myocardial Infarction and Ischemia from a Single Carotid Pressure Waveform in Rats”. European Heart Journal Open , 3(5): oead099.
  2. .
  3. 79- Shavelle D, Rinderknecht D, Jin W, Chiu WB, Krupa A, Pahlevan NM, Cook K, Mendelsohn F, Cawthon T, Reeves R, mcnamara R. et al (2023). “A Multicenter Validation of a Noninvasive Brachial Cuff-ECG System for Estimation of Elevated Left Ventricular End Diastolic Pressure”. Circulation , 148: A16544-A16544.
  4. .
  5. 78- Wei H, Hutchins DA, Ronney PD, and Pahlevan NM (2023). “Fluid-based microbial processes modeling in Trichodesmium colony formation”. Physics of Fluids , 35(10): 101902.
  6. .
  7. 77- Bilgi C, Lin BA, and, and Pahlevan NM (2023). “A New Left Ventricle Vortex Formation Time for Clinical Assessment of Diastolic Filling Efficiency Based on Direct Mechanical Ventricular-Vascular Coupling: Evaluation in Heart-Failure and Healthy Cohort”. Circulation , 148: A16610-A16610.
  8. .
  9. 76- Aghilinejad A, Amlani F, Mazandarani SP, King KS, and Pahlevan NM (2023). “Mechanistic Insights on Age-Related Changes in Heart-Aorta-Brain Hemodynamic Coupling Using a Pulse Wave Model of The Entire Circulatory System”. American Journal of Physiology-Heart and Circulatory Physiology , 325(5): H1193-H1209.
  10. .
  11. 75- Liu J, Bregasi A, Mitchell GF, and Pahlevan NM (2023). “Noninvasive Left Ventricle Pressure-Volume Loop Determination Method With Cardiac Magnetic Resonance Imaging and Carotid Tonometry Using a Physics-Informed Approach”. Circulation , 148: A16561-A16561.
  12. .
  13. 74- Niroumandi S, Rinderknecht D, Bilgi C, Wolfson A, Vaidya A, King KS, and Pahlevan NM (2023). “A Noninvasive Smartphone Assessment of Aortic Arch Pulse Wave Velocity and Total Arterial Compliance”. Circulation , 148: A18846-A18846.
  14. .
  15. 73- Amlani F, Wei H, and Pahlevan NM (2023). “A Fourier-based Methodology Without Numerical Diffusion for Conducting Dye Simulations and Particle Residence Time Calculations”. Journal of Computational Physics, 493, p.112472.
  16. .
  17. 72- Aghilinejad A, Rogers B, Geng H, , and Pahlevan NM (2023). “On the Longitudinal Wave Pumping in the Fluid-filled Compliant Tubes”. Physics of Fluids, 35, 091903.
  18. .
  19. 71- Niroumandi S, Alavi R, Wolfson AM, Vaidya AS, and Pahlevan NM (2023). “Assessment of Aortic Characteristic Impedance and Arterial Compliance from Non-invasive Carotid Pressure Waveform in The Framingham Heart Study”. The American Journal of Cardiology, 204: 195-199. .
  20. .
  21. 70- Alavi *, Wang Q, Gorji H, and Pahlevan NM (2023). “A Machine Learning Approach for Computation of Cardiovascular Intrinsic Frequencies”. PLoS ONE, 18(10):e0285228.
  22. .
  23. 69- Wei H, Cao K, Pahlevan NM, and Cheng AL (2023). “Shear-Dependent Changes in Blood Viscosity Negatively Affect Energetic Efficiency in Patient-Specific Models of the Fontan Circulation”. Circulation, 148: A12955-A12955.
  24. .
  25. 68- Liu J, Niroumandi S*, Petrasek D, and Pahlevan NM (2023). “Non-Invasive Insulin Resistance Evaluation Using Carotid Pressure Waveforms in Framingham Heart Study”. Circulation , 148: A16533-A16533.
  26. .
  27. 67- Aghilinejad A, Wei H, Bilgi C, Paredes A, DiBartolomeo A, Magee G, and Pahlevan NM (2023). “Framework Development for Patient-specific Compliant Aortic Dissection Phantom Model Fabrication: Magnetic Resonance Imaging Validation and Deep-learning Segmentation”. Journal of Biomechanical Engineering, 2023: 1-31.
  28. .
  29. 66- Niroumandi S*, Wolfson AM, Vaidya AS, and Pahlevan NM (2023). “Evaluation Of Left Ventricular Pulsatile Workload In Heart Failure With Preserved Ejection Fraction Using A Single Pressure Waveform Form Framingham Heart Study”. Hypertension, 80:AP367.
  30. .
  31. 65- Aghilinejad A, Wei H, , and Pahlevan NM (2023). “Non-invasive Pressure-only Aortic Wave Intensity Evaluation Using Hybrid Fourier Decomposition-Machine Learning Approach”. IEEE Transactions on Biomedical Engineering, 2023:1-10.
  32. .
  33. 64- Alavi R, Dai W, Kloner RA, and Pahlevan NM (2023). “Noninvasive and Instantaneous Detection of Myocardial Ischemia from A Single Carotid Waveform Using A Physics-Based Machine Learning Methodology”. Journal of the American College of Cardiology, 81(8S), 4012-4012.
  34. .
  35. 63- Wei H, Amlani F, and Pahlevan NM (2023). “Direct 0D-3D Coupling of a Lattice Boltzmann Methodology for Fluid-Structure Aortic Flow Simulations”. International Journal for Numerical Methods in Biomedical Engineering, 39(5):e3683.
  36. .
  37. 62- Cheng AL, Liu J, Bravo S, Miller JC, and Pahlevan NM (2023). “Screening Left Ventricular Systolic Dysfunction in Children Using Intrinsic Frequencies of Carotid Pressure Waveforms Measured by A Novel Smartphone-Based Device”. Physiological Measurement, 44(3), 035001.
  38. .
  39. 61- Alavi R, Dai W, Arechavala RJ, Kleinman MT, Kloner RA, and Pahlevan NM (2022). “Detection of the Effect of Nicotine Delivered by E-Cigarettes or Standard Cigarettes on Cardiovascular System From a Carotid Waveform Using a Physics-Based Machine Learning Approach”. Circulation, 146: A12922- A12922.
  40. .
  41. 60- Bilgi C, Amlani F, Wei H, Rizzi N, and Pahlevan NM (2022). “Thermal and Postural Effects on Fluid Mixing and Irrigation Patterns for Intraventricular Hemorrhage Treatment”. Annals of Biomedical Engineering, 51: 1270–1283.
  42. .
  43. 59- Gilpin M, Wei H, and Pahlevan NM (2022). “Womersley's Solution for the Measurement of Volume Flow Rates in Transient Laminar Flow Tubes”. Physics of Fluids, 179: A039-A039.
  44. .
  45. 58- Alavi R, Aghilinejad A, Wei H, Niroumandi S, Wieman S, and and Pahlevan NM (2022). “A coupled atrioventricular-aortic setup for in-vitro hemodynamic study of the systemic circulation: Design, Fabrication, and Physiological relevancy”. PLoS ONE, 179: A039-A039.
  46. .
  47. 57- Niroumandijahromi S, Vaidya A, and Pahlevan NM (2022). “Hybrid Intrinsic Frequency Machine Learning Approach For Calculation Of Total Arterial Compliance And Aortic Characteristic Impedance From A Single Carotid Waveform In Heart Failure With Preserved Ejection Fraction”. Hypertension, 179: A039-A039.
  48. .
  49. 56- Aghilinejad A, Wei H, Magee G, and Pahlevan NM (2022). “Model-Based Fluid-Structure Interaction Approach for Evaluation of Thoracic Endovascular Aortic Repair Endograft Length in Type B Aortic Dissection”. Frontiers in Bioengineering and Biotechnology, 10: 825015.
  50. .
  51. 55- Wei H, Herrington C, Cleveland J, Starnes V, and Pahlevan NM (2021). “Hemodynamically Efficient Artificial Right Atrium Design for Univentricular Heart Patients”. Physical Review Fluids, 6(12), 123103.
  52. .
  53. 54- Aghilinejad A, Alavi R, Rogers B, Amlani F, and Pahlevan NM (2021). “Effects of vessel wall mechanics on non-invasive evaluation of cardiovascular intrinsic frequencies”. Journal of Biomechanics, 129:110852.
  54. .
  55. 53- Aghilinejad A, Amlani F, Liu J, and Pahlevan NM (2021). “Accuracy and applicability of non-invasive evaluation of aortic wave intensity using only pressure waveforms in humans”. Physiological Measurement, , 42(10), 105003.
  56. .
  57. 52- Alavi R, Dai W, Kloner RA, and Pahlevan NM (2021). “A Physics-Based Machine Learning Approach for Instantaneous Classification of Myocardial Infarct Size”. Circulation , 144: A12098- A12098.
  58. .
  59. 51- Alavi R, Dai W, Amlani F, Rinderknecht DG, Kloner RA, and Pahlevan NM (2021). “Scalability of cardiovascular intrinsic frequencies: Validations in preclinical models and non-invasive clinical studies”. Life Sciences, 284:119880.
  60. .
  61. 50- Liu J and Pahlevan NM (2021). “Evaluation of a Non-invasive Left Ventricular Pressure-volume Loop Approximation Method Based on Arterial Blood Pressure Values and Cardiac MRI”. Circulation , 144: A14056- A14056.
  62. .
  63. 49- Alavi R, Dai W, Arechavala RJ, Kleinman MT, Kloner RA, and Pahlevan NM (2021). “Nicotine Delivered by Electronic Cigarette Vapor or Standard Cigarettes Adversely Affects Left Ventricular Systolic Function Measured by Cardiovascular Intrinsic Frequency in Rats”. Circulation , 144: A13745- A13745.
  64. .
  65. 48- Liu J and Pahlevan NM (2021). “The underlying mechanism of intersite discrepancies in ejection time measurements from arterial waveforms and its validation in the Framingham Heart Study”. American Journal of Physiology-Heart and Circulatory Physiology, 321(1):H135-H148.
  66. .
  67. 47- Alavi R, Liu J, Ramos M, Hindoyan A, Matthews RV, and Pahlevan NM (2021). “A Hybrid Machine Learning Method for Instantaneous Classification of Left Ventricular Filling Pressure Using Femoral Waveforms”. Circulation, 144: A14086- A14086.
  68. .
  69. 46- Iskander A, Bilgi C, Naftalovich R, Hacihaliloglu I, Berkman T, Naftalovich D, and Pahlevan NM (2021). “The Rheology of the Carotid Sinus: A Path Toward Bioinspired Intervention”. Frontiers in Bioengineering and Biotechnology, 9: 439.
  70. .
  71. 45- Cooper LL, Rong J, Pahlevan NM, Rinderknecht DG, Benjamin EJ, Hamburg NM, Ramachandran VS, Larson MG, Gharib M, and Mitchell GF (2021). “Intrinsic frequencies of carotid pressure waveforms predict heart failure events: the Framingham Heart Study”. Hypertension, 77(2), 338-346.
  72. .
  73. 44- Gonser M,, Pahlevan NM, and Gharib M (2020). “Optimisation Criterion for Pulsatile Timing: Observation in The Human Fetus”. Ultrasound in Obstetrics and Gynecology, 56(S1), 197-198.
  74. .
  75. 43- Iskander A, Naftalovich R, and Pahlevan NM (2020). “The Carotid Sinus as a Viscometer”. Diagnostics, 10.11: 924.
  76. .
  77. 42- Mogadam E, Shavelle D, Liu J, Giesler G, Matthews RV, and Pahlevan NM (2020). “Validation of A Non-invasive Approach for The Assessment of Left Ventricular-arterial Coupling Following Transcatheter Aortic Valve Replacement”. Circulation, 142(1), A16138-A16138.
  78. .
  79. 41- Alavi R, Dai W, Kloner RA, and Pahlevan NM (2020). “A Hybrid Artificial Intelligence-Intrinsic Frequency Method for Instantaneous Determination of Myocardial Infarct Size”. Circulation, 142(1), A15899-A15899.
  80. .
  81. 40- Pahlevan NM, Alavi R, Ramos M, Hindoyan A, and Matthews RV (2020). “An Artificial Intelligence Derived Method For Instantaneous Detection Of Elevated Left Ventricular End Diastolic Pressure”. Circulation, 142(1), A16334-A16334.
  82. .
  83. 39- Mogadam E, Shavelle DM, Giesler, GM., Economides C, Pierre LS, Duquette S, Matthews RV, Pahlevan NM (2020). “Intrinsic frequency method for instantaneous assessment of left ventricular-arterial coupling after transcatheter aortic valve replacement”. Physiological Measurement, 41(8): 085002.
  84. .
  85. 38- Wei H, Cheng AL, Pahlevan NM (2020). “On the Significance of Blood Flow Shear-rate-dependency in Modeling of Fontan Hemodynamics”. European Journal of Mechanics-B/Fluids, 84:1-14.
  86. .
  87. 37- Aghilinejad A, Amlani F, King KS, and Pahlevan NM (2020). “Dynamic Effects of Aortic Arch Stiffening on Pulsatile Energy Transmission to Cerebral Vasculature as A Determinant of Brain-Heart Coupling”. Scientific Reports, 10(1): 1-12.
  88. .
  89. 36- Pahlevan NM , Yao T, Chu K, Cole S, Tran T, Wood JC, and King KS (2020). “Group delay method for MRI aortic pulse wave velocity measurements in clinical protocols with low temporal resolution: Validation in a heterogeneous cohort”. Magnetic Resonance Imaging, 69: 8-15.
  90. .
  91. 35- Pahlevan NM and Mazandarani SP (2020). “Estimation of Wave Condition Number from Pressure Waveform Alone and Its Changes with Advancing Age in Healthy Women and Men”. Frontiers in Physiology, 11: 313.
  92. .
  93. 34- Rinderknecht DG, de Balasy JM, and Pahlevan NM (2020). “A wireless optical handheld device for carotid waveform measurement and its validation in a clinical study”. Physiological Measurement, 41(5): 055008.
  94. .
  95. 33- Miller J, Shepherd J, Rinderknecht DG, Cheng AL, and Pahlevan NM (2020). “Proof-Of-Concept For A Non-invasive, Portable, and Wireless Device for Cardiovascular Monitoring in Pediatric Patients”. PLoS ONE, 15(1): e0227145.
  96. .
  97. 32- Amlani F and Pahlevan NM (2020)
    “A stable high-order FC-based methodology for hemodynamic wave propagation”. Journal of Computational Physics, 405: p.109130.
  98. .
  99. 31- Kang J, Aghilinejad A, and Pahlevan NM (2019). “On the accuracy of displacement-based wave intensity analysis: Effect of vessel wall viscoelasticity and nonlinearity”. PLoS ONE, 14(11): e0224390.
  100. .
  101. 30- Cheng AL, Wee CP, Pahlevan NM, and Wood JC (2019). “A 4D flow MRI evaluation of the impact of shear-dependent fluid viscosity on in vitro Fontan circulation flow”. American Journal of Physiology-Heart and Circulatory Physiology, 317(6), H1243-H1253.
  102. .
  103. 29- Alavi R, Dai W, Kloner RA, and Pahlevan NM (2019). “A Hybrid Artificial Intelligence-Intrinsic Frequency Method for Instantaneous Detection of Acute Myocardial Infarction”. Circulation, 140(1), A12573-A12573.
  104. .
  105. 28- Cooper LL, Rong J, Pahlevan NM, Rinderknech DGt, Benjamin EJ, Hamburg NM, Ramachandran VS, Larson MG, Gharib M, and Mitchell GF. (2019). “Intrinsic Frequencies of Carotid Pressure Waveforms Predict Cardiovascular Disease Events: The Framingham Heart Study”. Circulation, 140(1), A14748-A14748.
  106. .
  107. 27- Mogadam E, Giesler G, Matthews RV, Pahlevan NM (2019). “A New Method for Instantaneous and Noninvasive Evaluation of Left Ventricular-Arterial Performance Following Transcatheter Aortic Valve Replacement”. Circulation, 140(1), A15284-A15284.
  108. .
  109. 26- Pahlevan NM (2019). “Bernoulli’s equation, significance, and limitations”. Principles of Heart Valve Engineering, 381-388.
  110. .
  111. 25- Pahlevan NM and RV Matthews (2019). “Cardiac Triangle Mapping: A New Systems Approach for Noninvasive Evaluation of Left Ventricular End Diastolic Pressure”. Fluids, 4(1), p16.
  112. .
  113. 24- Pahlevan NM, Dai W, and RA Kloner (2018). “Noninvasive and Instantaneous Diagnostics of Acute Myocardial Infarction Using Intrinsic Frequency Method”. Circulation, 138(1), A15311-A15311.
  114. .
  115. 23- Pahlevan NM, Ramos M, and RV Matthews (2018). “A Systems Approach for Noninvasive and Instantaneous Measurement of Left Ventricular End Diastolic Pressure Using Smartphone”. Circulation, 138(1), A16274-A16274.
  116. .
  117. 22- Armenian SH, Rinderknecht DG, Au K, Lindenfeld L, Mills G, Siyahian A, Herrera C, Wilson K, Venkataraman K, Mascarenhas K, Tavallali P, Razavi M, Pahlevan NM, Detterich J, Bhatia S, Gharib M. (2018). “Accuracy of a Novel Handheld Wireless Platform for Detection of Cardiac Dysfunction in Anthracycline-Exposed Survivors of Childhood Cancer”. Clinical Cancer Research.
  118. .
  119. 21- Pahlevan NM (2018). “MRI-based Measures of Left Ventricle Contractility and Intrinsic Frequency”. Proceedings of 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Accepted.
  120. .
  121. 20- Cheng AL, Pahlevan NM, and JC Wood (2018). “Non-Newtonian Behavior Significantly Affects Hemodynamic Efficiency In A Four-Dimensional Flow Magnetic Resonance Fontan Model”. Journal of the American College of Cardiology, 8; 71:A622.
  122. .
  123. 19- Tavallali P, Razavi, M, and Pahlevan NM (2018). “Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity Using Carotid Waveform”. Scientific Reports, 8(1), 1014.
  124. .
  125. 18- Cheng AL, Pahlevan NM, Rinderknecht DG, Wood JC, and M Gharib (2018). “Experimental investigation of the effect of non-Newtonian behavior of blood flow in the Fontan circulation”. European Journal of Mechanics-B/Fluids, 68: 184-192.
  126. .
  127. 17- 4. Razavi M and Pahlevan NM (2017). “Wave Condition Number Is Useful in Predicting Risk for Coronary Heart Disease from Framingham Heart Study Data”. Circulation. 136: A19399-A19399.
  128. .
  129. 16- Pahlevan NM, Rinderknecht DG, Tavallali P, Razavi, M., Tran TT, Fong M, Kloner RA, Csete M, and M Gharib (2017). “Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology”. Critical Care Medicine, 45(7), 1115-1120.
  130. .
  131. 15- Pahlevan NM, Rinderknecht DG, Tavallali P, Razavi, M., Tran TT, Fong M, Kloner RA, Csete M, and M Gharib (2016). “A New Noninvasive iPhone Application to Monitor Left Ventricle Ejection Fraction in Heart Failure Patients”. Circulation. 134: A17227.
  132. 14- Tavallali P, Hou TY, Rinderknecht DG, and Pahlevan NM (2015). "On the Convergence and Accuracy of the Cardiovascular Intrinsic Frequency Method". Royal Society Open Science. 2(12), p.150475
  133. 13- Petrasek D, Pahlevan NM, Tavallali P, Rinderknecht DG, and M Gharib (2015). “Intrinsic Frequency and the Single Wave Biopsy: Implications for Insulin Resistance”. Journal of Diabetes Science and Technology. 9(6):1246-1252
  134. 12- Falahatpisheh A,Pahlevan NM, and A Kheradvar (2015). “Effect of the Mitral Valve’s Anterior Leaflet on Axisymmetry of Transmitral Vortex Ring”. Annals of Biomedical Engineering. 43:2349-2360.
  135. .
  136. 11- Pahlevan NM, Petrasek D, Rinderknecht DG, Tavallali P, and M Gharib (2014). “Calculating Pulse Wave Velocity from a Single Pressure Waveform Using the Intrinsic Frequency Method”. Hypertension. 64.Suppl 1: A355-A355.
  137. 10- Pahlevan NM, Tavallali P, Rinderknecht DG, Petrasek D, Matthews R, Hou TY, and M Gharib (2014). “Intrinsic Frequency as a Systems Approach to Hemodynamic Waveform Analysis with Clinical Applications ”. Journal of the Royal Society Interface. 11(98): 20140617
  138. 9- Pahlevan NM and M Gharib (2014). “A Wave Dynamics Criterion for Optimization of Mammalian Cardiovascular System”. Journal of Biomechanics. 47(7): 1727-1732
  139. 8- Pahlevan NM and M Gharib (2014). “A Bio-Inspired Approach for the Reduction of Left Ventricular Workload”. PLoS ONE 9(1): e87122
  140. 7- Pahlevan NM and M Gharib (2014). “Pathological Wave Dynamics: A Postulate for Sudden Cardiac Death in the Athletes”. Medical Hypotheses. 82(1): 64–70
  141. 6- Pahlevan NM and M Gharib (2013). “In-Vitro Investigation of a Potential Wave Pumping Effect in Human Aorta”. Journal of Biomechanics. 46(13): 2122–2129
  142. 5- Pahlevan NM and M Gharib (2011) "Aortic Wave Dynamics and Its Influence on Left Ventricular Workload". PLoS ONE 6(8): e23106.
  143. 4- Pahlevan NM and M Gharib (2011). "Low Pulse Pressure with High Pulsatile External Left Ventricular Power: Influence of Aortic Waves". Journal of Biomechanics. 44(11): 2083–2089.
  144. 3- Pahlevan NM, Amlani F, Gorji H, Hussain F, and M Gharib (2011). “A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature” . Annals of Biomedical Engineering. 39(5): 1470-1481.
  145. .
  146. 2- Pahlevan NM, and M Gharib (2010). " Pulse Pressure as a Single Index May not Represent the Level of Left Ventricle Work Load: Influence of Aortic Wave Dynamics" . Hypertension. 56(5): E79-E79
  147. 1- Lin BA, Forouhar AS, Pahlevan NM, Anastassiou CA, Grayburn PA, Thomas JD, and M Gharib (2010). “Color Doppler Jet Area Overestimates Regurgitant Volume when Multiple Jets are Present” . Journal of the American Society of Echocardiography. 23(9):993-1000.